Monoid Hecke Algebras

نویسنده

  • MOHAN S. PUTCHA
چکیده

This paper concerns the monoid Hecke algebras H introduced by Louis Solomon. We determine explicitly the unities of the orbit algebras associated with the two-sided action of the Weyl group W . We use this to: 1. find a description of the irreducible representations of H, 2. find an explicit isomorphism between H and the monoid algebra of the Renner monoid R, 3. extend the Kazhdan-Lusztig involution and basis to H, and 4. prove, for a W ×W orbit of R, the existence (conjectured by Renner) of generalized Kazhdan-Lusztig polynomials. Introduction A monoid analogue of the Iwahori-Hecke algebra [11] was obtained by Solomon [27]–[29]. In an earlier paper [19] the author studied Solomon’s monoid Hecke algebras by studying the associated orbit algebras. These orbit algebras arise from the two-sided action of the Weyl group W on the Renner monoid R. In particular, the coefficients of the unity of the empty level orbit algebra were shown to be Rx,y, where Rx,y are polynomials introduced by Kazhdan and Lusztig [12]. The other orbit algebras were also shown to have unities, but their coefficients were only implicitly given. In this paper we give an explicit formula for the unities of all the orbit algebras, thereby obtaining a description of the irreducible representations of monoid Hecke algebras. We also obtain an explicit, but very complicated, isomorphism between the monoid Hecke algebra and the monoid algebra of R, solving a problem posed by Solomon [28]. We go on to extend to the monoid Hecke algebra the Kazhdan-Lusztig involution and basis for the (group) Iwahori-Hecke algebra. This then immediately yields polynomials Pθ,σ for θ, σ in the same W ×W orbit of R, partially solving a problem posed by Renner [26]. These polynomials are still mysterious; however, in the simplest case they are products of relative KazhdanLusztig polynomials introduced by Deodhar [6]. 1. Reductive monoids and monoids of Lie type Consider the general linear group G = GLn(F ) over an algebraically closed field F . It is the unit group of the multiplicative monoidM = Mn(F ) of all n×nmatrices over F . This monoid has the following structure. The diagonal idempotents form a Boolean lattice with respect to the natural order of idempotents: f ≤ e if ef = fe = f. Received by the editors December 3, 1993. 1991 Mathematics Subject Classification. Primary 20G40, 20G05, 20M30. Research partially supported by NSF Grant DMS9200077. c ©1997 American Mathematical Society

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation theory of q-rook monoid algebras

We show that, over an arbitrary field, q-rook monoid algebras are iterated inflations of Iwahori-Hecke algebras, and, in particular, are cellular. Furthermore we give an algebra decomposition which shows a q-rook monoid algebra is Morita equivalent to a direct sum of Iwahori-Hecke algebras. We state some of the consequences for the representation theory of q-rook monoid algebras.

متن کامل

q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality

When we were at the beginnings of our careers Sergei’s support helped us to believe in our work. He generously encouraged us to publish our results on Brauer and Birman-Murakami-Wenzl algebras, results which had in part, or possibly in total, been obtained earlier by Sergei himself. He remains a great inspiration for us, both mathematically and in our memory of his kindness, modesty, generosity...

متن کامل

The Hecke Group Algebra of a Coxeter Group and Its Representation Theory

Let W be a finite Coxeter group. We define its Hecke-group algebra by gluing together appropriately its group algebra and its 0-Hecke algebra. We describe in detail this algebra (dimension, several bases, conjectural presentation, combinatorial construction of simple and indecomposable projective modules, Cartan map) and give several alternative equivalent definitions (as symmetry preserving op...

متن کامل

m at h . G T ] 1 7 Ju l 2 00 9 AN INVARIANT FOR SINGULAR KNOTS

In this paper we introduce a Jones-type invariant for singular knots, using a Markov trace on the Yokonuma–Hecke algebras Yd,n(u) and the theory of singular braids. The Yokonuma–Hecke algebras have a natural topological interpretation in the context of framed knots. Yet, we show that there is a homomorphism of the singular braid monoid SBn into the algebra Yd,n(u). Surprisingly, the trace does ...

متن کامل

Representation theories of some towers of algebras related to the symmetric groups and their Hecke algebras

We study the representation theory of three towers of algebras which are related to the symmetric groups and their Hecke algebras. The first one is constructed as the algebras generated simultaneously by the elementary transpositions and the elementary sorting operators acting on permutations. The two others are the monoid algebras of nondecreasing functions and nondecreasing parking functions....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997